Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 8(4): 630-653, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38654896

RESUMO

Colloid generation, stability, and transport are important processes that can significantly influence the fate and transport of nutrients and contaminants in environmental systems. Here, we critically review the existing literature on colloids in redox-dynamic environments and summarize the current state of knowledge regarding the mechanisms of colloid generation and the chemical controls over colloidal behavior in such environments. We also identify critical gaps, such as the lack of universally accepted cross-discipline definition and modeling infrastructure that hamper an in-depth understanding of colloid generation, behavior, and transport potential. We propose to go beyond a size-based operational definition of colloids and consider the functional differences between colloids and dissolved species. We argue that to predict colloidal transport in redox-dynamic environments, more empirical data are needed to parametrize and validate models. We propose that colloids are critical components of element budgets in redox-dynamic systems and must urgently be considered in field as well as lab experiments and reactive transport models. We intend to bring further clarity and openness in reporting colloidal measurements and fate to improve consistency. Additionally, we suggest a methodological toolbox for examining impacts of redox dynamics on colloids in field and lab experiments.

2.
ACS Earth Space Chem ; 7(9): 1592-1609, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37753209

RESUMO

Reduction-oxidation (redox) reactions underlie essentially all biogeochemical cycles. Like most soil properties and processes, redox is spatiotemporally heterogeneous. However, unlike other soil features, redox heterogeneity has yet to be incorporated into mainstream conceptualizations of soil biogeochemistry. Anoxic microsites, the defining feature of redox heterogeneity in bulk oxic soils and sediments, are zones of oxygen depletion in otherwise oxic environments. In this review, we suggest that anoxic microsites represent a critical component of soil function and that appreciating anoxic microsites promises to advance our understanding of soil and sediment biogeochemistry. In sections 1 and 2, we define anoxic microsites and highlight their dynamic properties, specifically anoxic microsite distribution, redox gradient magnitude, and temporality. In section 3, we describe the influence of anoxic microsites on several key elemental cycles, organic carbon, nitrogen, iron, manganese, and sulfur. In section 4, we evaluate methods for identifying and characterizing anoxic microsites, and in section 5, we highlight past and current approaches to modeling anoxic microsites. Finally, in section 6, we suggest steps for incorporating anoxic microsites and redox heterogeneities more broadly into our understanding of soils and sediments.

3.
Water Res ; 238: 119990, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37146398

RESUMO

Fe-rich mobile colloids play vital yet poorly understood roles in the biogeochemical cycling of Fe in groundwater by influencing organic matter (OM) preservation and fluxes of Fe, OM, and other essential (micro-)nutrients. Yet, few studies have provided molecular detail on the structures and compositions of Fe-rich mobile colloids and factors controlling their persistence in natural groundwater. Here, we provide comprehensive new information on the sizes, molecular structures, and compositions of Fe-rich mobile colloids that accounted for up to 72% of aqueous Fe in anoxic groundwater from a redox-active floodplain. The mobile colloids are multi-phase assemblages consisting of Si-coated ferrihydrite nanoparticles and Fe(II)-OM complexes. Ferrihydrite nanoparticles persisted under both oxic and anoxic conditions, which we attribute to passivation by Si and OM. These findings suggest that mobile Fe-rich colloids generated in floodplains can persist during transport through redox-variable soils and could be discharged to surface waters. These results shed new light on their potential to transport Fe, OM, and nutrients across terrestrial-aquatic interfaces.


Assuntos
Água Subterrânea , Ferro , Ferro/química , Compostos Férricos , Solo , Coloides/química , Água Subterrânea/química , Oxirredução , Minerais/química
4.
Sci Data ; 9(1): 700, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376356

RESUMO

Research can be more transparent and collaborative by using Findable, Accessible, Interoperable, and Reusable (FAIR) principles to publish Earth and environmental science data. Reporting formats-instructions, templates, and tools for consistently formatting data within a discipline-can help make data more accessible and reusable. However, the immense diversity of data types across Earth science disciplines makes development and adoption challenging. Here, we describe 11 community reporting formats for a diverse set of Earth science (meta)data including cross-domain metadata (dataset metadata, location metadata, sample metadata), file-formatting guidelines (file-level metadata, CSV files, terrestrial model data archiving), and domain-specific reporting formats for some biological, geochemical, and hydrological data (amplicon abundance tables, leaf-level gas exchange, soil respiration, water and sediment chemistry, sensor-based hydrologic measurements). More broadly, we provide guidelines that communities can use to create new (meta)data formats that integrate with their scientific workflows. Such reporting formats have the potential to accelerate scientific discovery and predictions by making it easier for data contributors to provide (meta)data that are more interoperable and reusable.


Assuntos
Ciência Ambiental , Projetos de Pesquisa , Metadados , Fluxo de Trabalho
5.
Environ Sci Technol ; 56(20): 14452-14461, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36206030

RESUMO

Aquifer groundwater quality is largely controlled by sediment composition and physical heterogeneity, which commonly sustains a unique redox gradient pattern. Attenuation of heavy metals within these heterogeneous aquifers is reliant on multiple factors, including redox conditions and redox-active species that can further influence biogeochemical cycling. Here, we simulated an alluvial aquifer system using columns filled with natural coarse-grained sediments and two domains of fine-grained sediment lenses. Our goal was to examine heavy metal (Ni and Zn) attenuation within a complex aquifer network and further explore nitrate-rich groundwater conditions. The fine-grained sediment lenses sustained reducing conditions and served as a sink for Ni sequestration─in the form of Ni-silicates, Ni-organic matter, and a dominant Ni-sulfide phase. The silicate clay and sulfide pools were also important retention mechanisms for Zn; however, Ni was associated more extensively with organic matter compared to Zn, which formed layered double hydroxides. Nitrate-rich conditions promoted denitrification within the lenses that was coupled to the oxidation of Fe(II) and the concomitant precipitation of an Fe(III) phase with higher structural distortion. A decreased metal sulfide pool also resulted, where nitrate-rich conditions generated an average 20% decrease in solid-phase Ni, Zn, and Fe. Ultimately, nitrate plays a significant role in the aquifer's biogeochemical cycling and the capacity to retain heavy metals.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Argila , Monitoramento Ambiental/métodos , Compostos Férricos , Compostos Ferrosos , Sedimentos Geológicos/química , Água Subterrânea/química , Nitratos , Sulfetos , Poluentes Químicos da Água/análise
6.
ACS Earth Space Chem ; 6(7): 1666-1673, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35903782

RESUMO

Knowledge of how arsenic (As) partitions among various phases in Fe-rich sulfidic environments is critical for understanding the fate and mobility of As in such environments. We studied the reaction of arsenite and arsenate sorbed on ferrihydrite nanoparticle surfaces with dissolved sulfide at varying S/Fe ratios (0.1-2.0) to understand the fate and transformation mechanism of As during sulfidation of ferrihydrite. By using aqueous As speciation analysis by IC-ICP-MS and solid-phase As speciation analysis by synchrotron-based X-ray absorption spectroscopy (XAS), we were able to discern the mechanism and pathways of As partitioning and thio-arsenic species formation. Our results provide a mechanistic understanding of the fate and transformation of arsenic during the codiagenesis of As, Fe, and S in reducing environments. Our aqueous-phase As speciation data, combined with solid-phase speciation data, indicate that sulfidation of As-sorbed ferrihydrite nanoparticles results in their transformation to trithioarsenate and arsenite, independent of the initial arsenic species used. The nature and extent of transformation and the thioarsenate species formed were controlled by S/Fe ratios in our experiments. However, arsenate was reduced to arsenite before transformation to trithioarsenate.

7.
Environ Sci Technol ; 56(4): 2738-2746, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35072465

RESUMO

Sediment interfaces in alluvial aquifers have a disproportionately large influence on biogeochemical activity and, therefore, on groundwater quality. Previous work showed that exports from fine-grained, organic-rich zones sustain reducing conditions in downstream coarse-grained aquifers beyond the influence of reduced aqueous products alone. Here, we show that sustained anaerobic activity can be attributed to the export of organic carbon, including live microorganisms, from fine-grained zones. We used a dual-domain column system with ferrihydrite-coated sand and embedded reduced, fine-grained lenses from Slate River (Crested Butte, CO) and Wind River (Riverton, WY) floodplains. After 50 d of groundwater flow, 8.8 ± 0.7% and 14.8 ± 3.1% of the total organic carbon exported from the Slate and Wind River lenses, respectively, had accumulated in the sand downstream. Furthermore, higher concentrations of dissolved Fe(II) and lower concentrations of dissolved organic carbon in the sand compared to total aqueous transport from the lenses suggest that Fe(II) was produced in situ by microbial oxidation of organic carbon coupled to iron reduction. This was further supported by an elevated abundance of 16S rRNA and iron-reducing (gltA) gene copies. These findings suggest that organic carbon transport across interfaces contributes to downstream biogeochemical reactions in natural alluvial aquifers.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Carbono , Compostos Ferrosos , Água Subterrânea/química , Ferro , RNA Ribossômico 16S , Areia , Poluentes Químicos da Água/análise
8.
ISME J ; 16(4): 1140-1152, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34873295

RESUMO

The terrestrial subsurface microbiome contains vastly underexplored phylogenetic diversity and metabolic novelty, with critical implications for global biogeochemical cycling. Among the key microbial inhabitants of subsurface soils and sediments are Thaumarchaeota, an archaeal phylum that encompasses ammonia-oxidizing archaea (AOA) as well as non-ammonia-oxidizing basal lineages. Thaumarchaeal ecology in terrestrial systems has been extensively characterized, particularly in the case of AOA. However, there is little knowledge on the diversity and ecophysiology of Thaumarchaeota in deeper soils, as most lineages, particularly basal groups, remain uncultivated and underexplored. Here we use genome-resolved metagenomics to examine the phylogenetic and metabolic diversity of Thaumarchaeota along a 234 cm depth profile of hydrologically variable riparian floodplain sediments in the Wind River Basin near Riverton, Wyoming. Phylogenomic analysis of the metagenome-assembled genomes (MAGs) indicates a shift in AOA population structure from the dominance of the terrestrial Nitrososphaerales lineage in the well-drained top ~100 cm of the profile to the typically marine Nitrosopumilales in deeper, moister, more energy-limited sediment layers. We also describe two deeply rooting non-AOA MAGs with numerous unexpected metabolic features, including the reductive acetyl-CoA (Wood-Ljungdahl) pathway, tetrathionate respiration, a form III RuBisCO, and the potential for extracellular electron transfer. These MAGs also harbor tungsten-containing aldehyde:ferredoxin oxidoreductase, group 4f [NiFe]-hydrogenases and a canonical heme catalase, typically not found in Thaumarchaeota. Our results suggest that hydrological variables, particularly proximity to the water table, impart a strong control on the ecophysiology of Thaumarchaeota in alluvial sediments.


Assuntos
Archaea , Metagenômica , Amônia/metabolismo , Archaea/metabolismo , Sedimentos Geológicos , Oxirredução , Filogenia , Solo
9.
Sci Total Environ ; 809: 152215, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34890678

RESUMO

Greenhouse and other covered cultivation systems have increased globally over the past several decades, leading to considerably improved product quality and productivity per land area unit. However, there is a paucity in information regarding the environmental impacts of covered production systems, especially regarding pesticides entering the surrounding environment. Aiming to address this knowledge gap, we collected grab samples downstream of greenhouses from seven Swedish streams every 14 days during a 12 month period. In three of the streams, samples were also taken upstream of the greenhouses and in four of the streams time-integrated samples were collected by TIMFIE samplers in the period between grab sampling occasions. The samples were analyzed for 28 substances (27 that were permitted for use in greenhouse production systems in Sweden and one degradation product to a permitted substance). Pesticide use journals were collected from the greenhouse producers for the 12 month period. The results were examined for indications of greenhouse contributions to detection frequencies, maximum and average concentrations, and potential ecotoxicicity in several ways: (1) comparing locations downstream of greenhouses with registered use of a substance with those without registered use, (2) comparing results from this study with those from the Swedish environmental monitoring program of pesticides in surface water from catchments with no greenhouses from the same period and region, (3) comparing concentration trends with registered pesticide application times in the greenhouses, and (4) comparing up- and downstream concentrations. The results strongly suggest that greenhouse applications do contribute to pesticide occurrences, maximum and median concentrations for most of the pesticides included in this study, and to potential toxicity to aquatic organisms for several of them, most notably imidacloprid, acetamiprid, carbendazim, and pirimicarb.


Assuntos
Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Praguicidas/análise , Praguicidas/toxicidade , Suécia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Environ Sci Technol ; 55(5): 2939-2948, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33570404

RESUMO

Alluvial aquifers serve as one of the main water sources for domestic, agricultural, and industrial purposes globally. Groundwater quality, however, can be threatened by naturally occurring and anthropogenic metal contaminants. Differing hydrologic and biogeochemical conditions between predominantly coarse-grained aquifer sediments and embedded layers or lenses of fine-grained materials lead to variation in metal behavior. Here, we examine processes controlling Zn partitioning within a dual-pore domain-reconstructed alluvial aquifer. Natural coarse aquifer sediments from the Wind River-Little Wind River floodplain near Riverton, WY, were used in columns with or without fine-grained lenses to examine biogeochemical controls on Zn concentrations, retention mechanisms, and transport. Following the introduction of Zn to the groundwater source, Zn preferentially accumulated in the fine-grained lenses, despite their small volumetric contributions. While the clay fraction dominated Zn retention in the sandy aquifer, the lenses supported additional reaction pathways of retention-the reducing conditions within the lenses resulted in ZnS precipitation, overriding the contribution of organic matter. Zinc concentration in the groundwater controlled the formation of Zn-clays and Zn-layered double hydroxides, whereas the extent of sulfide production controlled precipitation of ZnS. Our findings illustrate how both spatial and compositional heterogeneities govern the extent and mechanisms of Zn retention in intricate groundwater systems, with implications for plume behavior and groundwater quality.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Compostos Orgânicos , Rios , Poluentes Químicos da Água/análise , Zinco
11.
Sci Total Environ ; 750: 141485, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32862002

RESUMO

The availability of heavy metals in terrestrial environments is largely controlled by their interactions with minerals and organic matter, with iron minerals having a particularly strong role in heavy metal fate. Because soil organic matter contains a variety of compounds that differ in their chemical properties, the underlying impact organic matter-soil mineral associations bestow on heavy metal binding is still unresolved. Here, we systematically examine the binding of Cd, Zn and Ni by a suite of organic-ferrihydrite assemblages, chosen to account for various compound chemistries within soil organic matter. We posited that organic compound functionality would dictate the extent of association with the organic-ferrihydrite assemblages. Increased heavy metal binding to the assemblages was observed and attributed to the introduction of additional binding sites by the organic functional groups with differing metal affinities. The relative increase depended on the metal's Lewis acidity and followed the order Cd > Zn > Ni, whereas the reverse order was obtained for metal binding by pristine ferrihydrite (Ni > Zn > Cd). Citric acid-, aspartic acid- and cysteine-ferrihydrite assemblages also enhanced the metal binding rate. X-ray absorption spectroscopy revealed that the organic coating contributed significantly to Zn binding by the assemblages, despite relatively low organic surface coverage. Our findings provide valuable information on the nature of heavy metal-organic-mineral interactions and metal adsorption processes regulating their bioavailability and transport.

12.
Environ Sci Technol ; 54(6): 3237-3244, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32069033

RESUMO

Groundwater contamination by As from natural and anthropogenic sources is a worldwide concern. Redox heterogeneities over space and time are common and can influence the molecular-level speciation of As, and thus, As release/retention but are largely unexplored. Here, we present results from a dual-domain column experiment, with natural organic-rich, fine-grained, and sulfidic sediments embedded as lenses (referred to as "reducing lenses") within natural aquifer sand. We show that redox interfaces in sulfur-rich, alkaline aquifers may release concerning levels of As, even when sediment As concentration is low (<2 mg/kg), due to the formation of mobile thioarsenates at aqueous sulfide/Fe molar ratios <1. In our experiments, this behavior occurred in the aquifer sand between reducing lenses and was attributed to the spreading of sulfidic conditions and subsequent Fe reductive dissolution. In contrast, inside reducing lenses (and some locations in the aquifer) the aqueous sulfide/Fe molar ratios exceeded 1 and aqueous sulfide/As molar ratios exceeded 100, which partitioned As(III)-S to the solid phase (associated with organics or as realgar (As4S4)). These results highlight the importance of thioarsenates in natural sediments and indicate that redox interfaces and sediment heterogeneities could locally degrade groundwater quality, even in aquifers with unconcerning solid-phase As concentrations.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Sedimentos Geológicos , Oxirredução
13.
Water Res ; 152: 251-263, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682569

RESUMO

Biogeochemical redox processes that govern radionuclide mobility in sediments are highly sensitive to forcing by the water cycle. For example, episodic draining and intrusion of oxidants into reduced zones during dry seasons can create biogeochemical seasonal hotspots of enhanced and changed microbial activity, affect the redox status of minerals, initiate changes in sediment gas and water transport, and stimulate the release of organic carbon, iron, and sulfur by oxidation of solid reduced species to aqueous oxic species. In the Upper Colorado River Basin, water-saturation of organic-enriched sediments locally promotes reducing conditions, denoted 'Naturally Reduced Zones' (NRZs), that accumulate strongly U(IV)sol. Subsequently, fluctuating hydrological conditions introduce oxidants, which may reach internal portions of these sediments and reverse their role to become secondary sources of Uaq. Knowledge of the impact of hydrological variability on the alternating import and export of contaminants, including U, is required to predict contaminant mobility and short- and long-term impacts on water quality. In this study, we tracked U, Fe, and S oxidation states and speciation to characterize the variability in redox processes and related Usol solubility within shallow fine-grained NRZs at the legacy U ore processing site at Shiprock, NM. Previous studies have reported U speciation and behavior in permanently saturated fine-grained NRZ sediments. This is the first report of U behavior in fine-grained NRZ-like sediments that experience repeated redox cycling due to seasonal fluctuations in moisture content. Our results support previous observations that reducing conditions are needed to accumulate Usol in sediments, but they counter the expectation that Usol predominantly accumulates as U(IV)sol; our data reveal that Usol may accumulate as U(VI)sol in roughly equal proportion to U(IV)sol. Surprisingly high abundances of U(VI)sol confined in transiently saturated fine-grained NRZ-like sediments suggest that redox cycling is needed to promote its accumulation. We propose a new process model, where redox oscillations driven by annual water table fluctuations, accompanied by strong evapotranspiration in low-permeability sediments, promote conversion of U(IV)sol to relatively immobile U(VI)sol, which suggests that Usol is accumulating in a form that is resistant to redox perturbations. This observation contradicts the common idea that U(IV)sol accumulated in reducing conditions is systematically re-oxidized, solubilized and transported away in groundwater.


Assuntos
Água Subterrânea , Urânio , Poluentes Radioativos da Água , Sedimentos Geológicos , Ferro , Oxirredução
14.
ISME J ; 13(2): 290-300, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30214028

RESUMO

Differentiating the contributions of photosynthesis and respiration to the global carbon cycle is critical for improving predictive climate models. Carbonic anhydrase (CA) activity in leaves is responsible for the largest biosphere-atmosphere trace gas fluxes of carbonyl sulfide (COS) and the oxygen-18 isotopologue of carbon dioxide (CO18O) that both reflect gross photosynthetic rates. However, CA activity also occurs in soils and will be a source of uncertainty in the use of COS and CO18O as carbon cycle tracers until process-based constraints are improved. In this study, we measured COS and CO18O exchange rates and estimated the corresponding CA activity in soils from a range of biomes and land use types. Soil CA activity was not uniform for COS and CO2, and patterns of divergence were related to microbial community composition and CA gene expression patterns. In some cases, the same microbial taxa and CA classes catalyzed both COS and CO2 reactions in soil, but in other cases the specificity towards the two substrates differed markedly. CA activity for COS was related to fungal taxa and ß-D-CA expression, whereas CA activity for CO2 was related to algal and bacterial taxa and α-CA expression. This study integrates gas exchange measurements, enzyme activity models, and characterization of soil taxonomic and genetic diversity to build connections between CA activity and the soil microbiome. Importantly, our results identify kinetic parameters to represent soil CA activity during application of COS and CO18O as carbon cycle tracers.


Assuntos
Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Microbiota , Microbiologia do Solo , Óxidos de Enxofre/metabolismo , Bactérias/enzimologia , Dióxido de Carbono/análise , Fungos/enzimologia , Isótopos de Oxigênio , Fotossíntese , Solo/química , Óxidos de Enxofre/análise
15.
Environ Sci Technol ; 51(19): 10954-10964, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28873299

RESUMO

Aquifers in the Upper Colorado River Basin (UCRB) exhibit persistent uranium (U) groundwater contamination plumes originating from former ore processing operations. Previous observations at Rifle, Colorado, have shown that fine grained, sulfidic, organic-enriched sediments accumulate U in its reduced form, U(IV), which is less mobile than oxidized U(VI). These reduced sediment bodies can subsequently act as secondary sources, releasing U back to the aquifer. There is a need to understand if U(IV) accumulation in reduced sediments is a common process at contaminated sites basin-wide, to constrain accumulated U(IV) speciation, and to define the biogeochemical factors controlling its reactivity. We have investigated U(IV) accumulation in organic-enriched reduced sediments at three UCRB floodplains. Noncrystalline U(IV) is the dominant form of accumulated U, but crystalline U(IV) comprises up to ca. 30% of total U at some locations. Differing susceptibilities of these species to oxidative remobilization can explain this variability. Particle size, organic carbon content, and pore saturation, control the exposure of U(IV) to oxidants, moderating its oxidative release. Further, our data suggest that U(IV) can be mobilized under deeply reducing conditions, which may contribute to maintenance and seasonal variability of U in groundwater plumes in the UCRB.


Assuntos
Água Subterrânea/química , Sulfetos/química , Urânio/química , Poluentes Radioativos da Água/química , Colorado , Água Subterrânea/análise , Oxirredução , Tamanho da Partícula , Rios , Poluentes Radioativos da Água/análise
16.
Sci Total Environ ; 603-604: 663-675, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28359569

RESUMO

Floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, are important repositories of organic carbon, nutrients, and metal contaminants. The accumulation and release of these species is often mediated by redox processes. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability of sediment redox conditions is therefore critical to developing conceptual and numerical models of contaminant transport within floodplains. The Upper Colorado River Basin (UCRB) is impacted by former uranium and vanadium ore processing, resulting in contamination by V, Cr, Mn, As, Se, Mo and U. Previous authors have suggested that sediment redox activity occurring within organic carbon-enriched bodies located below the groundwater level may be regionally important to the maintenance and release of contaminant inventories, particularly uranium. To help assess this hypothesis, vertical distributions of Fe and S redox states and sulfide mineralogy were assessed in sediment cores from three floodplain sites spanning a 250km transect of the central UCRB. The results of this study support the hypothesis that organic-enriched reduced sediments are important zones of biogeochemical activity within UCRB floodplains. We found that the presence of organic carbon, together with pore saturation, are the key requirements for maintaining reducing conditions, which were dominated by sulfate-reduction products. Sediment texture was found to be of secondary importance and to moderate the response of the system to external forcing, such as oxidant diffusion. Consequently, fine-grain sediments are relatively resistant to oxidation in comparison to coarser-grained sediments. Exposure to oxidants consumes precipitated sulfides, with a disproportionate loss of mackinawite (FeS) as compared to the more stable pyrite. The accompanying loss of redox buffering capacity creates the potential for release of sequestered radionuclides and metals. Because of their redox reactivity and stores of metals, C, and N, organic-enriched sediments are likely to be important to nutrient and contaminant mobility within UCRB floodplain aquifers.


Assuntos
Sedimentos Geológicos/química , Água Subterrânea/química , Oxirredução , Poluentes Químicos da Água/análise , Colorado , Monitoramento Ambiental , Ferro/análise , Rios , Enxofre/análise , Urânio
17.
Diabetes Ther ; 4(2): 443-59, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24254337

RESUMO

INTRODUCTION: The purpose of this study was to quantify United States (US) and United Kingdom (UK) physicians' preferences for attributes of type 2 diabetes treatments. METHODS: Samples of general practitioners (GPs) and endocrinologists in the US (n = 204) and the UK (n = 200) completed a discrete-choice experiment in which respondents chose between pairs of hypothetical type 2 diabetes treatments in a series of trade-off questions. The questions described hypothetical injectable treatments with differing levels of attributes, such as glucose control and treatment side effects. Relative importance of attributes was estimated by a multivariate regression model for limited dependent variables. These results were used to calculate how the predicted probability of choosing hypothetical type 2 diabetes treatments varies with changes in given attributes. RESULTS: The most important attributes to physicians were glucose control, risk of a fatal myocardial infarction (MI), and weight change. For US physicians, glucose control was about twice as important as gastrointestinal side effects, 5 times more important than changes in depression symptoms, and 20 times more important than liver monitoring. For UK physicians, reduction in MI risk was about 1.5 times more important than glucose control, 2.5 times more important than gastrointestinal side effects, and 10 times more important than liver-monitoring requirements. Preferences were similar among physicians in the US and the UK and among GPs and endocrinologists. CONCLUSIONS: Physicians valued type 2 diabetes treatments that go beyond glycemic control, although mitigating different complications and comorbidities was not equally as important.

18.
J Synchrotron Radiat ; 17(5): 683-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20724790

RESUMO

Sulfur K-edge XANES (X-ray absorption near-edge structure) spectroscopy is an excellent tool for determining the speciation of sulfur compounds in complex matrices. This paper presents a method to quantitatively determine the kinds of sulfur species in natural samples using internally calibrated reference spectra of model compounds. Owing to significant self-absorption of formed fluorescence radiation in the sample itself the fluorescence signal displays a non-linear correlation with the sulfur content over a wide concentration range. Self-absorption is also a problem at low total absorption of the sample when the sulfur compounds are present as particles. The post-edge intensity patterns of the sulfur K-edge XANES spectra vary with the type of sulfur compound, with reducing sulfur compounds often having a higher post-edge intensity than the oxidized forms. In dilute solutions (less than 0.3-0.5%) it is possible to use sulfur K-edge XANES reference data for quantitative analysis of the contribution from different species. The results show that it is essential to use an internal calibration system when performing quantitative XANES analysis. Preparation of unknown samples must take both the total absorption and possible presence of self-absorbing particles into consideration.


Assuntos
Compostos de Enxofre/química , Espectroscopia por Absorção de Raios X/métodos , Calibragem , Sulfatos de Condroitina/química , Dimetil Sulfóxido/química , Compostos de Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...